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Abstract

The applicability of finite elements for molecular dynamic simulations depends on both the structure’s dimen-
sions and the underlying force field type. Shell and continuum elements describe molecular structures only
in an average sense, which is why they are not subject of this paper. In contrast, truss and beam elements are
potentially attractive candidates when it comes to accurately reproducing the atomic interactions. However,
special considerations are required for force fields that use not only two-body, but also multi-body potentials.
For the example of bending and torsion energies it is shown how standard beam element models have to be
extended to be equivalent to classical molecular dynamic simulations.

Keywords: C. Modeling, C. Computational mechanics, C. Finite element analysis (FEA), A. Carbon
nanotubes, C. MDFEM

1. Introduction

Originally developed to solve structural engineer-
ing problems, the finite element (FE) method has
found its way into a variety of application areas.
Nowadays even molecular dynamic (MD) simula-
tions are performed using commercial FE programs.
One may wonder if this makes sense, because the
two methods are quite different:

• A FE analysis converges to the exact solution
when the mesh is sufficiently fine. The number
of bonds in MD simulations depends on the in-
teratomic distances and is not subject to change.

• While finite elements usually make use of first
or second order shape functions, bond energies
can be of tenth or even twelfth order.

The fact that, nevertheless, FE codes are used for
MD simulations, is mainly due to the following two
reasons:

• FE software is widely used and very popu-
lar in structural engineering, quite easy to use
and comes along with powerful pre- and post-
processing options and efficient solvers. When

regarding molecular structures as multi-body
systems with atoms as point masses and bonds
as springs, it provides a convenient tool for MD
simulations as well.

• Due to their quite general applicability, FE
codes can be used to couple continuum and
atomistic simulations. For an overview of mul-
tiscale methods, the reader is referred to the
work by Miller and Tadmor (2009) who com-
pare fourteen different techniques.

This paper aims to show the challenges and pitfalls
when using standard finite elements for MD simula-
tions, especially with regard to the following prob-
lems:

• Multi-body potentials connect three or more
atoms.

• Bond energies are independent of the atoms’ ro-
tational degrees of freedom.

• A distinction between natural and equilibrium
bond lengths and angles is necessary. That
is, unlike continuum structures, most molecu-
lar systems contain large amounts of potential
energy even in an unloaded equilibrium state.
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From a mechanical point of view, shell elements,
even though widely used for the simulation of
e. g. multi-walled carbon nanotubes, are not capa-
ble of describing atomic interactions exactly. There-
fore shell elements as well as continuum elements
which can be applied to simulate micro- and macro-
structures are not discussed here. In addition to the
obvious candidates which include trusses, beams and
spring elements, we will introduce an extended beam
model for small deformations as well as special user
elements which can be used for large deformations.
The different models are compared for the example
of carbon nanotubes with and without Stone-Wales
defects subjected to different kinds of loading.

2. Force fields

2.1. Energy potentials

The possibilities and limits of particle molecular
dynamics are closely related to the development of
the computer. The first MD simulation was carried
out by Alder and Wainwright (1957). They devel-
oped a model containing a few hundred particles that
interact through elastic collisions with each other. In
this way, they could simulate the phase transition
from liquid to solid. Rahman (1964) were the first
to use the Lennard-Jones potential in molecular dy-
namics in order to examine the properties of liquid
argon.

Since then, various force field approaches have
been developed to describe the different atomic in-
teractions. From a mechanical point of view, a force
field can be seen as data basis containing stiffnesses
and strengths for chemical and physical bonds. The
stiffnesses are neither constant nor dependent on only
two atoms, but a function of the distances and angles
of a whole bunch of atoms. Thus, some force fields
can only be applied to very specific molecules.

Throughout this paper, we apply the general-
purpose DREIDING force field developed by Mayo
et al. (1990). Its functional form contains linear (har-
monic) as well as nonlinear (anharmonic) potentials
to account for small and large deformations. Thus it
serves as an adequate example to study the approx-
imation capabilities of different finite elements. As
a so-called class I force field, is has been parameter-
ized based on element type, hybridization and con-

Figure 1: Modifications of elemental carbon

nectivity for many chemical elements. In the follow-
ing, however, to keep things simple, we concentrate
on sp2 hybridized carbon.

As shown in Figure 1, sp2 hybridized carbon atoms
form graphite. The different layers, which are called
graphene, consist of hexagons. They are connected
to each other only by means of physical bonds, so-
called van der Waals bondings. Carbon nanotubes
which were discovered by Iijima (1991) can be seen
as a special case of graphene. Note that the nano-
tubes’ caps, like fullerenes, also contain pentagons.
In diamond, carbon is sp3 hybridized which allows
for a fourth chemical bond.

2.2. Linear and nonlinear approaches

From a mechanical point of view, molecules like
multi-body systems can be either statically determi-
nate or indeterminate. In the latter case, the equilib-
rium state can usually only be given approximately
and has to be determined within a so-called confor-
mational analysis. To overcome numerical problems
caused by highly nonlinear energy functions, it is
good practice to start with a linear approach.

In Figure 2, linear and nonlinear energy poten-
tials of the DREIDING force field and the corre-
sponding stiffnesses are compared for the example
of sp2 hybridized carbon. The equilibrium distance
or, to be more precise, the natural bond distance
is given to Re = 1.42 Å. Bond stretch interactions
are described either by a simple harmonic oscilla-
tor Elin

B resulting in a constant bond stiffness clin
B or
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(a) Bond stretch: linear/nonlinear stiffness and energy

(b) Bending: linear/nonlinear stiffness and energy

(c) Torsion: linear/nonlinear stiffness and energy

Figure 2: Energy potentials for sp2 hybridized carbon according
to DREIDING force field

an exponential Morse function EB that allows to ac-
count for bond breaking. Note that the corresponding
bond stiffness cB decays with increasing interatomic
distance and becomes negative when the limit dis-
tance Rfail = 1.73 Å is exceeded. Bending and tor-
sion are either modeled using harmonic angle poten-
tials Elin

A and Elin
T with constant spring stiffnesses clin

A
and clin

T or by harmonic cosine potentials EA/ET and
nonlinear stiffnesses cA/cT, respectively. Due to
their sp2 hybridization, carbon atoms C 2 or rather
C R (aromatic ring) have two natural bend angles,
Θ0

J = 120◦ and 240◦, and two natural twist angles,
ϕ0

JK = 0◦ and 180◦. For ΘIJK = 180◦ or rather
ϕIJKL = 90◦ and 270◦, the nonlinear approaches for
bending/torsion have a slope equal to zero and en-
able a transition between the natural angles. Note
that a torsional loading also affects the deformation
of neighboring bonds as shown in Figures 3 and 4 for
both natural angles.

Figure 3: Torque of atoms with natural twist angle ϕ0
JK = 0◦

Figure 4: Torque of atoms with natural twist angle ϕ0
JK = 180◦
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Figure 5: Modeling of bond stretch using spring elements

(a) Rotational spring enrich-
ment (force field approach)

(b) Normal spring enrichment

Figure 6: Different truss element models for angle bend

3. FE models using standard elements

The modeling of bond stretch is very straightfor-
ward. As shown in Figure 5, a spring, which is the
simplest finite element, would suffice. Of course,
truss and beam elements can be used as well. Un-
fortunately, all these elements have only two nodes,
so that a direct modeling of multi-body potentials is
impossible.

3.1. Truss element models
At first glance, it seems obvious to use a truss

model since truss nodes, like atoms, have only trans-
lational degrees of freedom. However, it requires
some extra effort to consider bending, and modeling
of torsion is not even possible.

Truss models have to be enriched by either rota-
tional or normal springs. Rotational springs require
the introduction of truss angles as additional degrees
of freedom, defined and constrained by the nodal co-
ordinates. Normal springs have the disadvantage that
the bending potential can only be represented by a
complex geometric relationship if deformations be-
come large.

For the example molecule given in Figure 6, the
bond angle ΘIJK is defined by the coordinates of the

Figure 7: Conversion of rotational spring to normal spring

truss nodes I, J and K. Since the structure is stat-
ically determinate, all bonds on the left will rotate
by the same angle β as bond IJ, and all bonds on the
right will rotate by the same angle α as bond JK. The
deformation of both models is equivalent with the
reference solution given by the force field method.

To demonstrate the duality of rotational and nor-
mal spring enrichment, without loss of generality, we
assume that bonds IJ and JK are both of length Re

and use a natural angle of Θ0
J = 120◦. As shown in

Figure 7, node K is subjected to a bending moment

MA =

∫ ΘIJK

Θ0
J

cA(Θ̃IJK) dΘ̃IJK (1)

where the nonlinear bending stiffness cA is known.
The force

FA =

∫ l

l0
kA(l̃) dl̃ (2)

depends on the normal spring’s current and initial
length

l = 2Re sin
(
ΘIJK

2

)
l0 = l(ΘIJK = Θ0

J) =
√

3Re .

(3)

The equilibrium of forces directly yields the force

FA =
MA

Re cos
(

ΘIJK
2

) (4)

as a function of the moment MA = MA(ΘIJK) and the
current angle ΘIJK . By deriving FA with respect to l,
we get the nonlinear normal spring stiffness as

kA =
dFA

dl
=

dFA

dΘIJK

dΘIJK

dl
. (5)

While the derivative dFA
dΘIJK

depends on the chosen ap-
proach for the bending energy, the derivative dΘIJK

dl
can be formed solely from geometric considerations.
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Since standard finite elements can consider only a
constant stiffness clin

A = KIJK , we now assume that
deformations are small: ΘIJK → Θ0

J. Then, moment

Mlin
A = KIJK[ΘIJK − Θ0

J] (6)

and force
F lin

A = klin
A (l − l0) (7)

depend linearly on the angle ΘIJK or rather the
length l. The normal stiffness

klin
A =

4KIJK

R2
e

. (8)

is proportional to the bending stiffness KIJK .
As already mentioned, truss models cannot handle

torsion potentials. Hence, they are limited to pla-
nar structures such as graphene, see e. g. the mod-
els developed by Wang (2004), Leung et al. (2005),
Zhang et al. (2007) and Zhu and Wang (2007), or se-
lected spatial structures. For instance, Odegard et al.
(2002) and Nahas and Abd-Rabou (2010) use the
truss model shown in Figure 6(b) for the simulation
of defect-free carbon nanotubes subjected to uniaxial
loading.

Lacking torsional stiffness, truss models are quite
instable. Simulations performed by the authors
demonstrate that nanotubes with Stone-Wales de-
fects lead to convergence problems due to rigid body
motions. Even for defect-free nanotubes, numerical
robustness cannot be guaranteed. In case of a bend-
ing load, for example, there is no resistance against
the inversion of individual atoms. In contrast to
bending shells, the structural behavior is comparable
to that of a membrane shell where the lack of bend-
ing stiffness leads to unrealistic local snap-through
problems of one or more atoms.

Comparing truss and beam models, Hu et al.
(2005) come to the conclusion that truss models can-
not describe carbon nanotubes since the Poisson’s ra-
tio ν would have to be set to a constant value of 1/3
which is not correct.

3.2. Beam element models

A very straightforward beam model which was
proposed by Li and Chou (2003b) is to link the beam
elements by means of rigid connections as shown in

(a) With rigid corners (b) With joints and constraints

Figure 8: Different beam element models for angle bend

Figure 8(a). Since the modeling effort is low, we de-
note this approach “standard beam model”.

An alternative way is to connect the beams with
the help of hinges (2D) or joints (3D) and to con-
strain the rotational degrees of freedom. For the ex-
ample depicted in Figure 8(b), the rotation of node J
of bond JK is given as β+γ

2 with β and γ denoting
the rotation of bonds IJ and HJ, respectively. The
other beam nodes are constrained in an analogous
way. Note that the bond angles have to be determined
from the nodal coordinates. This approach has the
advantage over the standard beam model that only
translational degrees of freedom remain.

Several variants of the standard beam model can
be found in the literature. For example, Wang
and Wang (2004) examine the failure mechanism of
multi-walled carbon nanotubes using the commercial
FE code Abaqus with beam element B33, a 3D Euler
Bernoulli beam. Under bending loading, local buck-
les occur that are formed like ribs. This phenomenon
can also be observed in experiments. To consider
the Morse potential, Chwal (2011) replaces the con-
stant normal stiffness of the B33 element with a cor-
responding user material model. The Abaqus beam
element B31H, which adopts a hybrid Timoshenko
formulation, is used by Saavedra Flores et al. (2011).
The nonlinear bond stretch behavior is imposed by
an Ogden hyperelastic material law. Chen and Cao
(2006) and Ding et al. (2007) use the quadratic Tim-
oshenko beam element B32.

Further examples include Tserpes and Papanikos
(2005), Sakhaee-Pour and Ahmadian (2007), Fan
et al. (2009) and Shokrieh and Rafiee (2010) which
use the Euler Bernoulli element BEAM4 of the com-
mercial software Ansys.
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How problematic the application of beam ele-
ments for nanostructures is can be deduced from the
findings of Yoon et al. (2004). They come to the
conclusion that Timoshenko beam elements should
be preferred over Euler-Bernoulli beams when cal-
culating the wave propagation speed within carbon
nanotubes.

? address “Yakobson’s paradox” concerning the
large scatter of the elastic modulus of SWCNT ob-
tained in atomistic and continuum approximations.
In order to determine equivalent thickness and Pois-
son’s ratio for C-C bonds uniquely, they assume
isotropic material behavior and equivalence between
bending potential and bending stiffness of the shear-
flexible Timoshenko beam.

The issue is not whether bonds possess a transver-
sal shear stiffness or not, but if it is possible to iden-
tify beam constants at all. While the nonlinear nor-
mal stiffness EA can be derived directly from the
bond stretch energy EA, it is not trivial to determine
bending and torsional stiffness.

As demonstrated in the following, an unambigu-
ous identification of the beam’s bending stiffness EI
is only possible for planar structures, i. e., when
torsion can be neglected. For demonstration pur-
poses, we consider a tension test and a shear test
of graphene. The unit cells are depicted in Figures
9 and 10. Without loss of generality, we assume
small deformations and neglect bond length changes:
R = Re for EA = RecB → ∞. The total energies of
the force field approach

Wtension = 4
1
2

cAΨ2 + 2
1
2

cA(2Ψ)2 = 6cAΨ2

Wshear = 4
1
2

cAΨ2 = 2cAΨ2
(9)

can be given as a function of the truss angle Ψ. Also
shown in Figures 9 and 10 are the deformations and
bending moment curves of the standard beam ele-
ment model. According to the direct displacement
method and considering the nodal angle ϕ = Ψ

3 , we
get

Mtension = 6
EI
Re

Ψ

Mshear = 2
EI
Re

Ψ

(10)

(a) Force field approach (b) Beam elements

(c) Bending moments

Figure 9: Unit cell of graphene: tension test

(a) Force field approach (b) Beam elements

(c) Bending moments

Figure 10: Unit cell of graphene: shear test
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as the corresponding moments and

Wtension =
1
2

Fu = 12
EI
Re

Ψ2

Wshear =
1
2

FReΨ + 2
1
2

Mϕ −
1
2

(2M)ϕ = 4
EI
Re

Ψ2

(11)
as the total energies. Equating the energies from Eqs.
(9) and (11) leads to the bending stiffness

EI =
1
2

RecA (12)

for the “standard beam model” (SBM).
Nevertheless, though the bending stiffness is iden-

tical for both load cases, a calculation of the bend-
ing test as depicted in Figure 6 leads to incorrect
results. As shown in Figure 8(a), due to the beam
curvature, the bonds on the left next to bond IJ are
rotated by an angle larger than β whereas the bonds
on the right next to bond JK are rotated by an angle
smaller than α. Note that the result from the alter-
native beam model shown in Figure 8(b) is equally
bad.

As if this was not enough, in case of spatial nano-
structures, even the parameter identification is am-
biguous. To take into account that torque of beams
weakens the overall stiffness, the bending stiffness
is increased by many authors. As proposed by Li
and Chou (2003a, 2004), e. g. Lau et al. (2004),
Kalamkarov et al. (2006) and Fan et al. (2009) use
a bending stiffness of

EI = RecA (13)

which is twice as much as the analytical solution
from Eq. (12). Normal and torsional stiffness are
given as EA = RecB and GJ = RecT, respectively.

Another suggestion was made by Hu et al. (2005,
2007) who derive a bending stiffness of

EI =
cBR3

e(cBR2
e + 3cA)

36(cBR2
e − cA)

. (14)

Using the Dreiding parameters given in Figures 2(a)
and 2(b), Re = 1.42 Å, clin

B = 648.6 N/m and clin
A =

0.6952 aNm/rad2, yields EI = 6.318 · 10−29 Nm2

which lies in between the analytical solution EI =

4.936 · 10−29 Nm2 and the bending stiffness EI =

9.872 · 10−29 Nm2 from the approach by Li and Chou
(2003a, 2004). The torsional stiffness derived by Hu
et al. (2005, 2007), GJ = 2RecT = 2.468 · 10−29 Nm2

with clin
T = 0.08690 aNm/rad2 from Figure 2(c), is

twice as much as the value given by Li and Chou
(2003a, 2004). As expected, the normal stiffness is
set to EA = RecB.

Many other approaches are possible. For instance,
assuming a circular beam cross-section and a Pois-
son’s ratio ν = 0, we propose a torsional stiffness of
GJ = E

2(1+ν)2I = EI when using the analytical bend-
ing stiffness from Eq. (12).

For completeness, it should be mentioned that the
standard beam approach is also not capable of sim-
ulating the torsion test shown in Figures 3 and 4. It
is not possible to decouple bending and torsion since
the twist angle ϕIJKL, which is the angle between the
two planes IJK and JKL, can be created both by a
twist of beam JK and by bending of the beams IJ
and KL. Further, as already discussed for the ex-
ample of the bending test, the curvature of the beam
leads to false bond rotations.

To conclude this section, we would advise against
using the presented standard element FE models.
Of course it is possible to adapt the standard beam
model to obtain acceptable approximations for spe-
cific applications, but when trying to reproduce force
fields as precisely as possible, node-by-node cou-
pling of rotational degrees of freedom should be
avoided. Exceptions include two-dimensional mod-
els such as the polymer network simulated by Wang
et al. (2003) since torsion can be neglected in this
case.

4. Extended beam element models

The idea behind the extended beam element mod-
els is to decouple the different energy types by means
of the superposition technique shown in Figures 11
and 12. Special 3-node and 4-node elements are
needed to handle bending and torsion separately. De-
pending on the application, these macro elements
may either be composed of standard beam elements
or implemented as user finite elements. Rotational
degrees of freedom are allowed internally, but must
be eliminated on the element level. Consequently,
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Figure 11: Extended beam element model for angle bend

(a) Superposition technique: 4 torsion elements for bond JK

(b) Torsion element #1, composed of standard beam elements

Figure 12: Extended beam element model for torsion

all macro elements are to be connected by means of
joints.

For instance, Parvaneh et al. (2009) use nonlinear
springs and connector elements provided by Abaqus
as base elements. Similar to torsional springs applied
by e. g. Meo and Rossi (2006) and Rossi and Meo
(2009), connector elements make use of relative ro-
tation between two nodes while the global rotations
are ignored.

A special case of the extended beam model are
user elements based on potentials of Tersoff-Brenner
type because a large number of atomic interactions
has to be considered, see Brenner (1990) for de-
tails. For example, Theodosiou and Saravanos (2007,
2011) developed a 6-node “benzene element” based
on these potentials. The AFEM element proposed
by Liu et al. (2004) consists of 10 carbon atoms and

Wackerfuß (2009) even created a special 22-node fi-
nite element.

The mesh generation costs of the overlay tech-
nique are quite high compared to the standard beam
element model when using separate bond stretch,
bending and torsion elements. For instance, each an-
gle ΘIJK requires its own bending element so that for
graphene a total of four bending elements include
bond IJ. Moreover, bond IJ also belongs to a to-
tal of twelve torsion elements: four times as middle
segment and eight times as end segment. However,
the total number of degrees of freedom is only half
as large because only translational degrees of free-
dom are needed and the parameter identification has
a unique solution.

4.1. Small deformations

As shown in Figure 11, two beam elements that
are welded together function as rotational spring. In
accordance with the reference solution presented in
Figure 6(a), all bonds on the left rotate exactly by β
while the bonds on the right rotate by α.

The superposition technique also makes it possible
to match the reference solution for torsion given in
Figures 3 and 4 exactly. The 2-node bond stretch el-
ements, the 3-node bending elements from Figure 11
and the 4-node torsion elements from Figure 12 are
connected by only using their translational degrees of
freedom. Figures 13(a) and 14(a) show all elements
that are superposed for the natural angles ϕ0

JK = 0◦

and 180◦.
In order to decouple bending and torsion within

the torsion element, the engineering constants of pipe
and I-beams have to be chosen such that only the
pipe element, which acts as a coil spring, possesses
strain energy, see Figure 12(b). Torsional loadings
like the ones given in Figures 13(b) and 14(b) not
only lead to torque (Figures 13(d) and 14(d)) but also
to bending moments (Figures 13(c) and 14(c)). The
resulting bending energy vanishes when the bending
stiffnesses are chosen to go to zero or rather infinity.
Then the torsional energy ET is produced exclusively
by the pipe element. For demonstration purposes, let
us assume that deformations are small which leads a
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Figure 13: Internal beam forces for natural angle ϕ0
JK = 0◦

Figure 14: Internal beam forces for natural angle ϕ0
JK = 180◦

torsion energy of

Elin
T = lim

EIη→∞

∫
−

1
2

MBw′′ dξ +

∫ ξK

ξJ

1
2

MTϕ
′ dξ

= lim
EIη→∞

∫
1
2

M2
B

EIη
dξ +

∫ ξK

ξJ

1
2

M2
T

GIT
dξ

= 0 +

∫ Re

0

1
2

M2
T

clin
T Re

dξ

(15)
with {. . .}′ = d{...}

dξ .
As shown in the Figures 13(e) and 14(e), the bend-

ing moment is distributed between two bending el-
ements: either I1JK and JKL1 or I1JK and JKL2.
The indices “1” and “2” of nodes I and L denote the
equilibrium state: cis-configuration (0◦-element) for
identical indices, trans-configuration (180◦-element)
in case of different indices.

Torque is distributed between four torsion ele-
ments: the two 0◦-elements I1JKL1 and I2JKL2 and
the two 180◦-elements I1JKL2 and I2JKL1, as shown
in Figures 13(f) und 14(f):

Mcis
T =

3MT,I1 JKL1

4
+

MT,I1 JKL2

4
+

MT,I2 JKL1

4
−

MT,I2 JKL2

4
(16)

for the cis-configuration and

Mtrans
T =

MT,I1 JKL1

4
+

3MT,I1 JKL2

4
−

MT,I2 JKL1

4
+

MT,I2 JKL2

4
(17)

for the trans-configuration. The resulting twist an-
gles are identical to the reference solution given in
Figures 3(c) and 4(c).

4.2. Large deformations

Truss and beam elements normally have constant
engineering parameters. They cannot be used as base
elements for the 3- and 4-node bending and torsion
elements if deformations become large. Apart from
the question of how to describe nonlinear force field
potentials, geometric nonlinearities complicate their
application. For instance, at large tensile strains,
even with linear elastic material, the force-deflection
curve drops due to a reduction of the cross-section
area. A workaround is to set the Poisson’s ratio to
zero. A better choice, however, is to use spring ele-
ments which do not have a cross-section area. Most
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FE programs provide spring elements or rather con-
nector elements where an arbitrary nonlinear force-
deflection characteristic can be defined.

As already noted, the application of rotational
springs requires the definition of bond angles as ro-
tational degrees of freedom from the nodal coordi-
nates. In order to reduce this modeling effort and to
eliminate the rotational degrees of freedom on the
element level, we have implemented bond stretch,
bending and torsion elements as user-defined ele-
ments within the framework of the molecular dy-
namic finite element method (MDFEM), see Nasdala
et al. (2010) for more details. Besides the aforemen-
tioned advantages of the extended beam model over
the standard beam model, the MDFEM elements are
characterized by the following beneficial features:

• There is no need to introduce initial strains or
stresses because the natural distance Re as well
as the natural angles Θ0

j and ϕ0
JK are intrinsic

element parameters. As a result, nodal coor-
dinates only have to be given approximatively
since the FE model automatically relaxes to the
equilibrium state.

• A parameter identification procedure is obsolete
since all parameters can be taken directly from
the force field.

• Optionally, they are applicable to a small strain
analysis using harmonic potentials, e. g. when
the initial configuration is improved during a
linear relaxation step.

There is no approximation of any kind, even in case
of large deformations, i. e., the results are identical to
a molecular dynamic simulation using any nonlinear
force field potential.

5. Finite element analysis of carbon nanotubes

In the following, various simulations of carbon
nanotubes are presented. The goal is to demonstrate
the differences between the standard beam model and
the extended beam model and to show the robustness
of the MDFEM elements.

The mechanical and electrical properties of nan-
otubes depend on the chiral angle θ. Figure 15 shows

Figure 15: Classification of carbon nanotubes according to the
chiral vector Ch = na + mb

that the corresponding chiral vector Ch = na + mb
can be expressed as a function of the base vectors a
and b with the integer coefficients n and m ∈ [0, n].
Of particular interest are zigzag nanotubes (n, 0) and
armchair nanotubes (n, n).

5.1. Local tension tests
As a first example, we choose a (17,0) zigzag

nanotube subjected to tensile loading. Figure 16 de-
picts three different load cases that have been exam-
ined. Load case 1 represents more or less a global
tension test. For load cases 2 and 3, the nodal forces
F = 10−10 N are applied locally.

The exact results of the extended beam model are
obtained using MDFEM. They are compared to three
variants of the standard beam model, i. e. to the three
parameter sets for the bending and torsional stiff-
nesses given in section 3.2.

For comparison purposes, the deformations are as-
sumed to be small and the equilibrium state estab-
lished within the MDFEM conformational analysis
is used as initial configuration also for the beam ele-
ment models. The beams are modeled using Abaqus
B33 elements based on Euler-Bernoulli beam theory.
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Load Load Load
case 1 case 2 case 3

MDFEM ∆u in pm 0.5403 0.5273 0.3818

SBM/ ∆u in pm 0.5442 0.5303 0.4471
Eq. (12) Erel in % 0.72 0.57 17.10

Hu et al./ ∆u in pm 0.4717 0.4629 0.3815
Eq. (14) Erel in % 12.70 12.21 0.08

Li and Chou/ ∆u in pm 0.3755 0.3730 0.2917
Eq. (13) Erel in % 30.50 29.26 23.60

Figure 16: Local tension tests of (17,0) zigzag nanotube

Figure 16 shows the results of a static analysis with
a deformation scale factor of 200. Moreover, the rel-
ative motion ∆u = uB − uA between nodes A and B
including the relative errors with respect to the refer-
ence MDFEM solution are listed.

With relative errors of 0.72 % and 0.57 % for the
axisymmetric load cases 1 and 2, a good agreement
can be observed for the SBM parameter set. The high
error of 17.10 % in load case 3 can be explained by
the different local bend angles.

Hu et al. (2005, 2007) make use of a hexagonal
unit cell as part of a graphene layer to identify the
relation between the force field and beam stiffnesses.
As a result, load case 3 shows only a small error of
0.08 %. However, load cases 1 and 2 differ from the
reference solution by 12.70 % and 12.21 % , respec-
tively. With an average error of about 28 %, the pa-

Figure 17: Equilibrium configurations of (10,10) armchair
nanotubes

rameter set based on the approach by Li and Chou
(2003a, 2004) yields a too stiff behavior for all load
cases.

The example illustrates that standard beam models
can be adapted to capture specific loading scenarios.
A simulation of all load cases, however, is not pos-
sible. As a consequence, beam elements as well as
truss elements should be avoided in favor of more
precise models such as the extended beam model.

5.2. Global tension tests

In our next examples, we consider (10,10) arm-
chair nanotubes with and without Stone-Wales de-
fects subjected to large deformations, such that ge-
ometric as well as material failure can be observed.
In FE analyses, different solution techniques can be
applied to determine the structural response. For
instance, in case of snap-through problems, a path-
tracking algorithm such as Riks’ method can be very
useful. The goal is to demonstrate that MDFEM ele-
ments are applicable to different kinds of procedures
such as a static analysis using the Riks arc-length
method or the Euler backward and Hilber-Hughes-
Taylor (HHT) implicit time integration schemes.

As in molecular dynamics, the first step of an MD-
FEM calculation is a conformational analysis. Fig-
ure 17 shows the obtained equilibrium configurations
for a defect-free nanotube SW0 and three examples
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(a) defect group SW0

(b) defect group SW1

(c) defect group SW2

(d) defect group SW3

Figure 18: Comparison of FE solution techniques for tension
test of carbon nanotubes with defects

with Stone-Wales defects at different locations la-
beled SW1, SW2 and SW3. The color coding shows
the logarithmic strains of the individual bonds. It
illustrates the deviation from the initial defect-free
structure (green), which reaches its maximum in the
vicinity of the defects (red).

When subjected to tension as depicted in load-
deflection curves in Figure 18, the nanotubes fail due
to bond breakage. Note that the pre-failure paths as
well as the failure loads are identical for all three
procedures. As bond failure is a dynamic process,
the equilibrium path of the static Riks method dif-
fers from the two dynamic procedures. After fail-
ure, HHT and Euler backward solutions exhibit a
dynamic equilibrium. The Euler backward method
adopts large amounts of numerical damping, which
is why the amplitudes are significantly smaller than
the ones obtained using HHT. The snap-back-like be-
havior observed for the Riks method should not be
confused with a stability problem. The nonlinear-
ity of the load-deflection curve is caused by material
failure.

An interesting result is that the failure load is re-
duced from 152 nN to about 130 nN no matter where
the defects are located. The failure strain is also re-
duced from 25 % to 18 %. In the upper left corner of
each load-deflection curve in Figure 18, the logarith-
mic bond strains are depicted at the onset of damage.
While for the examples SW1, SW2 and SW3 bond
breakage is induced by the defects, the defect-free
tube SW0 starts to fail from the ends.

5.3. Bending, torsion and compression tests

A stability problem occurs, when the (10,10) arm-
chair nanotubes are subjected to compression, tor-
sion or bending. Again, we applied the three solu-
tion techniques but for reasons of clarity, Figure 19
only gives the load-deflection curves obtained with
the static Riks method, as it is supposed to be the
most efficient method when geometric failure such
as snap through occurs.

The compression test reveals that carbon nano-
tubes are imperfection sensitive since defects (SW1,
SW2, SW3) lead to an enormous drop of the load-
deflection curve. Another important result is that
the Riks method is not applicable to defect-free
nanotubes: Due to the perfect symmetry, the Riks
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(a) Compression

(b) Torsion

(c) Bending

Figure 19: Stability problems simulated using the Riks arc-
length method

method fails to branch at the bifurcation point. The
critical load for SW0 is not 120 nN, but 65 nN as both
dynamic simulations, which are not presented here,
show. While the critical load for SW1 und SW2 is
10 nN, the critical load of SW3 decreases only little,
namely to 62 nN. This effect can be explained by the
symmetry of the defects SW3 which are located at
opposite sides in the center of the tube, cf. Figure 17.

The torsion test is another good example for the
fact that defects serve as imperfections and thus turn
a bifurcation problem into a snap-through or rather a
snap-back problem. Note that the Riks method again
fails to detect the bifurcation point of the defect-free
tube SW0. The critical load of 33 aNm can only
be found by introducing geometric imperfections,
which is not straightforward since the MDFEM ele-
ments “know their natural lengths and distances” and
thus would relax to the symmetric equilibrium state.
In contrast, dynamic time integration schemes such
as HHT and Euler backward allow for a direct calcu-
lation of the critical load. When introducing Stone-
Wales defects, the aforementioned snap-back behav-
ior occurs, i.e., the defects serve as starting points for
the failure of the nanotubes. In these cases, the re-
sults of the Riks method match their dynamic equiv-
alents.

The critical load drops from 33 aNm without de-
fects to 20-22 aNm with defects.

For the bending tests, all critical loads are detected
by the arc-length method. The reason for this is that
no material failure, but a pure snap-through problem
occurs. The critical loads 24 aNm for SW0 and ap-
prox. 22 aNm for SW1, SW2 and SW3 match the
ones computed using HHT and Euler backward. The
offset in the load-deflection curves for SW1 and SW2
is caused by the non-symmetric Stone-Wales defects
which lead to a curvature of the nanotube during the
conformational analysis.

6. Conclusions

As a conclusion, the question given in the title of
this paper shall be answered. Shell and continuum
elements should not be used for molecular dynamic
simulations since they are not able to capture the
interatomic relations properly. Our examples show
that a straightforward application of truss and beam
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elements also leads to a number of problems when
multi-body potentials are to be considered:

• material parameters for angle bend and torsion
cannot be identified uniquely

• there might be false results, especially when
loads are applied locally

• there is no distinction between natural and equi-
librium bond lengths and angles.

Workarounds are to either use a Tersoff-Brenner type
force field which has no bending or torsion poten-
tials or to apply the extended beam technique where
all rotational degrees of freedom are eliminated on
the element level. For large deformations, we recom-
mend the molecular dynamic finite element method
(MDFEM) which is based on special 2-, 3- and 4-
noded user elements. MDFEM allows for an efficient
modeling and simulation of molecular structures us-
ing any finite element software code. It can be ap-
plied to large concurrent multiscale analyses, where
only parts of a material that are assumed to be im-
portant (e.g. interfaces) are modeled using MD ele-
ments, while bulk material regions are handled using
continuum elements.
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